Voyager + C++ With Multi-Dimensional Arrays (Part 2: Writing)

This is part 2 of using Cube Voyager Multi-Dimensional Arrays with C++. To see part 1, click here.

Building on last weeks post, the below shows the modifications necessary in Cube. The first thing I added is the variable itself (else, you will get one of those inexplicable errors). In this case, I add MDARRAY2 as a variable that is the same dimensions as MDARRAY. The second part that I add (which is after the CALL statement) is just to report the values stored in MDARRAY2.

RUN PGM=MATRIX PRNFILE="C:\TEMP\DTMAT00B.PRN"
FILEO PRINTO[1] = "C:\TEMP\DEBUG.PRN"

PAR ZONES=1

ARRAY MDARRAY=5,5, MDARRAY2=5,5

LOOP _c=1,5
  LOOP _r=1,5
    MDARRAY[_c][_r]=RAND()
    PRINT PRINTO=1 LIST='MDARRAY[',_c(1.0),'][',_r(1.0),']=',MDARRAY[_c][_r](8.6)
  ENDLOOP
ENDLOOP

CALL DLL=DLLFILE(TableReader)

LOOP _c=1,5
  LOOP _r=1,5
    PRINT PRINTO=1 LIST='MDARRAY2[',_c(1.0),'][',_r(1.0),']=',MDARRAY2[_c][_r](8.6)
  ENDLOOP
ENDLOOP
ENDRUN

In C++, I add a second variable for MDARRAY2 (called TableRecord2). It is critical that this is a double* variable, as this needs to be a pointer so Cube can access updated values of the variable. Similar with how I read MDARRAY into TableRecord, I do the same with MDARRAY2 and TableRecord2, which reads the pointers to MDARRAY2 into TableRecord2. Then, as I iterate through TableRecord, I set TableRecord2 to 10 * TableRecord. After this, the DLL is complete and Cube ultimately prints all the values to the print output.

int TableReader (Callstack* Stack){
	double* TableRecord;
	double* TableRecord2;
	char message[100];

	TableRecord=(double*)Stack->pfFindVar("MDARRAY",0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
                16,17,18,19,20,21,22,23,24);
	TableRecord2=(double*)Stack->pfFindVar("MDARRAY2",0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
                16,17,18,19,20,21,22,23,24);
	for(int x=0;x<=24;x++){ 	if(&TableRecord!=0){ 			 		sprintf(message,"TableRecord=%f",TableRecord[x]); 		Stack->pfPrnLine(1,message);
		TableRecord2[x]=TableRecord[x]*10;
		}
	}
	return 0;
}

Additional Considerations

If you decide to use this, you may want to pass the sizes of each dimension if it is important. Then, you can write a function to take the sequential value and return the column or row.

Tags: , , , ,

Comments from Other Sites

Comments are closed.